Direct search based on probabilistic feasible descent for bound and linearly constrained problems
نویسندگان
چکیده
Direct search is a methodology for derivative-free optimization whose iterations are characterized by evaluating the objective function using a set of polling directions. In deterministic direct search applied to smooth objectives, these directions must somehow conform to the geometry of the feasible region and typically consist of positive generators of approximate tangent cones (which then renders the corresponding methods globally convergent in the linearly constrained case). One knows however from the unconstrained case that randomly generating the polling directions leads to better complexity bounds as well as to gains in numerical efficiency, and it becomes then natural to consider random generation also in the presence of constraints. In this paper, we study a class of direct search based on sufficient decrease for solving smooth linearly constrained problems where the polling directions are randomly generated (in approximate tangent cones). The random polling directions must satisfy probabilistic feasible descent, a concept which reduces to probabilistic descent in the absence of constraints. Such a property is instrumental in establishing almost-sure global convergence and worst-case complexity bounds with overwhelming probability. Numerical results show that the randomization of polling directions compares favorably to the classical deterministic approach. In some cases, one can observe a clear superiority of randomization, as it is suggested by our complexity results.
منابع مشابه
LP problems constrained with D-FRIs
In this paper, optimization of a linear objective function with fuzzy relational inequality constraints is investigated where the feasible region is formed as the intersection of two inequality fuzzy systems and Dombi family of t-norms is considered as fuzzy composition. Dombi family of t-norms includes a parametric family of continuous strict t-norms, whose members are increasing functions of ...
متن کاملConstrained Nonlinear Optimal Control via a Hybrid BA-SD
The non-convex behavior presented by nonlinear systems limits the application of classical optimization techniques to solve optimal control problems for these kinds of systems. This paper proposes a hybrid algorithm, namely BA-SD, by combining Bee algorithm (BA) with steepest descent (SD) method for numerically solving nonlinear optimal control (NOC) problems. The proposed algorithm includes th...
متن کاملCONSTRAINED BIG BANG-BIG CRUNCH ALGORITHM FOR OPTIMAL SOLUTION OF LARGE SCALE RESERVOIR OPERATION PROBLEM
A constrained version of the Big Bang-Big Crunch algorithm for the efficient solution of the optimal reservoir operation problems is proposed in this paper. Big Bang-Big Crunch (BB-BC) algorithm is a new meta-heuristic population-based algorithm that relies on one of the theories of the evolution of universe namely, the Big Bang and Big Crunch theory. An improved formulation of the algorithm na...
متن کاملPattern Search Methods for Linearly Constrained Minimization
We extend pattern search methods to linearly constrained minimization. We develop a general class of feasible point pattern search algorithms and prove global convergence to a KarushKuhn-Tucker point. As in the case of unconstrained minimization, pattern search methods for linearly constrained problems accomplish this without explicit recourse to the gradient or the directional derivative of th...
متن کاملPattern Search Algorithms for Bound Constrained Minimization
We present a convergence theory for pattern search methods for solving bound constrained nonlinear programs. The analysis relies on the abstract structure of pattern search methods and an understanding of how the pattern interacts with the bound constraints. This analysis makes it possible to develop pattern search methods for bound constrained problems while only slightly restricting the flexi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017